Time Explicit Schemes and Spatial Finite Differences Splittings
نویسندگان
چکیده
In this article, we conjugate time marching schemes with Finite Differences splittings into low and high modes in order to build fully explicit methods with enhanced temporal stability for the numerical solutions of PDEs. The main idea is to apply explicit schemes with less restrictive stability conditions to the linear term of the high modes equation, in order that the allowed time step for the temporal integration is only determined by the low modes. These conjugated schemes were developed in [10] for the spectral case and here we adapt them to the Finite Differences splittings provided by Incremental Unknowns, which steems from the Inertial Manifolds theory. We illustrate their improved capabilities with numerical solutions of Burgers equations, with uniform and nonuniform meshes, in dimensions one and two, when using modified Forward– Euler and Adams–Bashforth schemes. The resulting schemes use time steps of the same order of those used by semi-implicit schemes with comparable accuracy and reduced computational costs.
منابع مشابه
Water hammer simulation by explicit central finite difference methods in staggered grids
Four explicit finite difference schemes, including Lax-Friedrichs, Nessyahu-Tadmor, Lax-Wendroff and Lax-Wendroff with a nonlinear filter are applied to solve water hammer equations. The schemes solve the equations in a reservoir-pipe-valve with an instantaneous and gradual closure of the valve boundary. The computational results are compared with those of the method of characteristics (MOC), a...
متن کاملInvestigation of Fluid-structure Interaction by Explicit Central Finite Difference Methods
Fluid-structure interaction (FSI) occurs when the dynamic water hammer forces; cause vibrations in the pipe wall. FSI in pipe systems due to Poisson and junction coupling has been the center of attention in recent years. It causes fluctuations in pressure heads and vibrations in the pipe wall. The governing equations of this phenomenon include a system of first order hyperbolic partial differen...
متن کاملAn efficient nonstandard numerical method with positivity preserving property
Classical explicit finite difference schemes are unsuitable for the solution of the famous Black-Scholes partial differential equation, since they impose severe restrictions on the time step. Furthermore, they may produce spurious oscillations in the solution. We propose a new scheme that is free of spurious oscillations and guarantees the positivity of the solution for arbitrary stepsizes. The...
متن کاملNonstandard explicit third-order Runge-Kutta method with positivity property
When one solves differential equations, modeling physical phenomena, it is of great importance to take physical constraints into account. More precisely, numerical schemes have to be designed such that discrete solutions satisfy the same constraints as exact solutions. Based on general theory for positivity, with an explicit third-order Runge-Kutta method (we will refer to it as RK3 method) pos...
متن کاملAPPROXIMATION OF STOCHASTIC PARABOLIC DIFFERENTIAL EQUATIONS WITH TWO DIFFERENT FINITE DIFFERENCE SCHEMES
We focus on the use of two stable and accurate explicit finite difference schemes in order to approximate the solution of stochastic partial differential equations of It¨o type, in particular, parabolic equations. The main properties of these deterministic difference methods, i.e., convergence, consistency, and stability, are separately developed for the stochastic cases.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Sci. Comput.
دوره 20 شماره
صفحات -
تاریخ انتشار 2004